
Virtual Agents Testing 

Solution
by Rahul Srivastava

(Shared with the client’s full permission, this brief summary highlights a small part of my work, including 

consulting on the testing framework and planning development.)



Content

1. Problem Analysis

2. Proposed Testing Framework

3. Exploring and Prioritizing Solutions

4. Feature Prioritization and Delivery Plan



Chatbot Fails

o Chatbot fails result in confusion and frustration

o This may happen due to hallucination, not 

understanding user’s intent, repetition etc. 

o Metrics like drop off rate, failure rate etc. can indicate 

problems with the model responses 

o It is important to identify most of these issues during 

testing phase rather than after deployment

Can I bring a refillable water 
bottle into the venue?

I'm sorry, I don't understand 
your request. Did you mean: 
"How to fill a water bottle?

No, I mean, can I take one into 
the venue?

Great! There are many ways to 
fill a water bottle. You can use 
a tap, a water fountain, or even 
rain if you're feeling 
adventurous!

I just want to know if I can 
bring one.

Hmm. I'm still learning, but I'm 
here to help. Have you 
considered buying a water 
bottle instead?



Problem Statement

Problem Statement

“Our current testing approach for virtual agents (VAs) reaches its limits when VA outputs are generated using Large 

Language Models (LLMs)”

Further Information

o Current testing framework is designed for rule-based VA outputs

o Primary issue is non-deterministic responses generated by LLMs

o Testing limit is not reached due to data volume or computational constraints



Problem Space: Identifying the root cause

Problem Statement

“Our current testing approach for virtual agents (VAs) reaches its limits when VA outputs are generated using Large 

Language Models (LLMs)”

Why?

As our testing framework is optimized for evaluating fixed, predictable answers but not suitable for variable, context 

sensitive responses 

Why?

As Testing for VA outputs generated using LLMs requires adaptability to handle non-deterministic outputs.

Root Cause Problem

“Our testing approach lacks adaptability to handle variable, context sensitive, non-deterministic VA outputs generated 

using LLMs“



Exploring the Problem

• Current testing relies on evaluating outputs based on static, 

predefined rules

• Fails to account for LLM’s variable, context-sensitive outputs

• Inconsistent Quality

• No Context Sensitivity

• Scalability Issues: Requires frequent updates to cover response changes

• Limited Subjectivity: Can’t evaluate tone, compliance, or sentiment

• Dynamic User Interactions

• Customer Support

• High-Stakes Domains

• Multilingual Settings

• End Users

• Customer Support Teams

• Compliance and Legal Teams

• Product Teams

• Reduced User Trust and Satisfaction

• Higher Costs: More manual QA and updates

• Compliance and Ethical Risks

• Scalability Issues

• Reputational Risk

Our testing approach lacks 

adaptability to handle variable, 

context sensitive, non-deterministic 

VA outputs generated using LLMs 



Solution Proposed : Build AI Agent Testing Framework 

Test for purpose built, enterprise-specific acceptance criteriaTest for Evaluation 

Parameters

Be Scalable

Be Adaptive

Be Fine-grained

Be Specialized

Test for Edge Cases

Purpose-built, leveraging specific data and domain knowledge

Support high-volume testing for real-world scenarios

Allow ongoing assessment and iterative improvement

Measure performance over business-critical data slices

Evaluate rare or unusual scenarios (“long-tail”)

Salient Features



Objectives Met by AI Agent Testing Framework

The framework allows us to run experiments with past and experimental data to identify if the Virtual Agents are able to 

pass through following criteria:

1. Provides good answers

a. Meets evaluation standards of:

i. Accuracy

ii. Compliance

iii. Contextuality

iv. Tone and Sentiment

v. Toxicity

vi. Fairness

b. Is Specialized

Purpose built for enterprise-

specific acceptance criteria



Objectives Met by AI Agent Testing Framework

2. Has correct technical behavior 

a. Stores the right analytics

b. Scores the response correctly 

c. Captures the exit messages for monitoring

3. Identifies missing information 

4. Has good user experience



Virtual Agent Testing Framework

Evaluation Engine

Virtual 

Agent

Dataset 

Questions Responses

1. End type : Response 

success / failure / emergency 

2. Score: 

i. Overall

ii. Accuracy

iii. Tone and sentiment

iv. …

3. End reasons

Score < threshold

Monitoring and 

Continuous Improvement

Reporting Module
1. Distribution of end type

2. Distribution of score – 

overall and on different 

parameters

3. Distribution of end reasons

Manual 

Intervention to 

identify reasons 

for low score

Score > threshold

Deployment



Exploring Solutions for “Evaluation Engine” 

Solution Explanation Pros Cons

OSS Benchmark Testing Use open-source benchmarks 

to evaluate accuracy and 

consistency on basic, objective 

metrics.

• Cost-effective and 

straightforward

• Establishes a general 

performance baseline

• Limited to objective, 

factual checks

• Lacks nuance in context, 

tone, or compliance

LLM as a Judge Utilize another LLM to evaluate 

responses based on subjective 

criteria like tone, context, and 

sentiment

• Adds flexibility for 

nuanced evaluations

• Scalable with custom 

prompts for specific 

criteria

• Prone to inconsistency; 

may replicate model 

biases

• Can be subjective 

without strict guidelines

Quality Model with 

Labeling Functions (LFs)

Build a quality model that uses 

LFs based on human 

annotations and LLM feedback 

to automatically assess 

responses

• Provides a scalable, self-

learning evaluation 

model

• Aggregates multiple 

feedback types for 

consistent scoring

• Requires ongoing LF 

tuning and maintenance

• Complex to implement 

and refine over time



Weighted Criteria Matrix

Criteria Weight OSS Benchmark 

Testing

LLM-as-a-Judge Quality Model with 

Labeling Functions (LFs)

Multi-Criteria Evaluation 

Capability

5 1 (5) 3 (15) 5 (25)

Domain Expertise Integration 3 1 (3) 3 (9) 5 (15)

Customization and Flexibility 4 2 (8) 3 (12) 5 (20)

Confidence Scoring 4 0 (0) 4 (16) 5 (20)

Error Analysis 4 2 (8) 3 (12) 5 (20)

Self-Learning 2 0 (0) 2 (4) 5 (10)

Scalability 5 3 (15) 4 (20) 5 (25)

Fine-Grained Insights 2 1 (2) 2 (4) 5 (10)

Implementation Time 5 5 (25) 3 (15) 1 (5)

Technical Feasibility 5 5 (25) 4 (20) 2 (10)

Total Score 91 127 160



Dependency Check

Evaluation Engine Dependencies

OSS Benchmarking None

LLM-as-a-Judge None

Quality Model LLM-as-a-Judge

Though the Quality Model scored highest in the Weighted Criteria 

Matrix, its development is dependent on LLM-as-a-Judge. 

Therefore, it makes sense to create an MVP using LLM-as-a-

Judge as the evaluation engine. 

Post MVP development, the needs should be reassessed to decide 

whether to proceed with the development of Quality Model or not. 



Core Features of the Testing Application (High Level)

1. Input Interface

a) Accepts chat transcripts of VA outputs for evaluation

b) Sends it to the evaluation engine for analysis

2. Evaluation Engine

a) Scoring mechanism based on evaluation criteria

b) Classification mechanism by end type (success, failure, emergency exit)

c) Classification mechanism by end reasons

3. Basic Reporting Module

a) Aggregate distribution of end types

b) Aggregate distribution and average for evaluation criteria

c) Aggregate distribution of end reasons



Features List of the Testing Application with Prioritization

1. Test Data Creation

1.1 Gather chat transcripts Must have

1.2 Pre-process data to remove noise - manual Must have

1.2.1 Data cleaning

1.3 Pre-process data to remove noise - automation Good to have

1.3.1 Data cleaning

1.3.2 Standardization 

1.3.3 Tokenization

1.3.4 Noise removal

1.3.5 Anonymization

2. Input Interface

2.1 Bulk Upload Functionality Must have

2.2 API Integration for Input with random data slicing Good to have

2.3 API Integration for Input with specific data slicing Good to have

3. Evaluation Engine

3.1 Model selection, training and fine tuning for LLM as a judge Must Have

3.2 Scoring Mechanism Must Have

3.2.1 Evaluation Criteria Framework

3.2.2 Scoring Implementation

3.3.3 Threshold Management

3.3 Classification Mechanism by End Type Must Have

3.3.1 End-Type Classification Logic

3.3.2 Customizable End-Type Definitions

3.4 Identifying End Reasons Good to Have

3.4.1 Pattern identification for identification of end reasons

3.4.1.1 Sentiment analysis Priority 1

3.4.1.2 Statement analysis Priority 1

3.4.1.3 Word analysis Priority 2

3.4.1.4 Engagement analysis Priority 2

4. Reporting Module

4.1 Set up Dashboard for Key metrics Must have

4.2 End-Type Reporting Must have

4.3 Evaluation Criteria Reporting Must have

4.4 Manual tagging to highlight reasons for low score Must have

4.4 Exportable Reports Good to have

4.5 Notifications to highlight high attention issues Good to have

4.6 Real time monitoring interface Good to have



Timeline for MVP and Roadmap

5. Future Enhancements

5.1 Evaluation engine enhancement

5.1.1 Pattern identification for identification of 

end reasons

5.1.1.1 Sentiment analysis

5.1.1.2 Statement analysis

5.1.1.3 Word analysis

5.1.1.4 Engagement analysis

5.2 Pre-process data to remove noise - 

automation

5.2.1 Data cleaning

5.2.2 Standardization 

5.2.3 Tokenization

5.2.4 Noise removal

5.2.5 Anonymization

5.3 Input interface enhancement

5.3.1 API Integration for Input with random 

data slicing

5.3.2 API Integration for Input with specific 

data slicing

5.4. Reporting Module enhancement

5.4.1 Exportable Reports

5.4.2 Notifications to highlight high attention 

issues

5.4.3 Real time monitoring interface

Roadmap Item

Quarter 1 - MVP 

Test data creation

Input interface

Evaluation Engine

Reporting Module

Quarter 2

Evaluation engine enhancement

Pre-process data to remove noise - automation

Input interface enhancement

Quarter 3

Reporting Module enhancement

MVP Version

1. Project planning and elaboration phase Week 1-2

2. Test Data Creation

2.1 Gather chat transcripts Week 1-2

2.2 Pre-process data to remove noise - manual Week 3-4

3. Input Interface

3.1 Bulk Upload Functionality Week 3-4

4. Evaluation Engine

4.1 Model selection, training and fine tuning for LLM 

as a judge Week 2-5

4.2 Scoring Mechanism Week 6-7

4.3 Classification Mechanism by End Type Week 8-9

5. Reporting Module

5.1 Set up Dashboard for Key metrics Week 4

5.2 End-Type Reporting Week 5

5.3 Evaluation Criteria Reporting Week 6

5.4 Manual tagging to highlight reasons for low score Week 5-7

6. End to end integration testing, bug fixes and 

deployment Week 10-12



Delivery Plan 



Sample User Story and Acceptance Criteria

User Story

US 14: Chat Transcripts Bulk Upload 

“As a QA user, I want to upload chat transcripts of VA’s output in bulk so that the evaluation engine can analyze the VA’s 

performance efficiently against predefined evaluation criteria.”

Acceptance Criteria

1. Verify that the interface has a component where user can drag and drop multiple files.

2. Verify that there is also an upload component that allows for selecting and uploading multiple files using a file selector.

3. Verify that the acceptable file formats are JSON and CSV.

4. Verify that there is real-time progress update during the upload process, showing percentage of completion.

5. Verify that the system provides a toaster message summarizing number of files successfully uploaded and number of files 

that failed to be uploaded.

6. Verify that the list of files successfully uploaded is displayed below this upload component with an option to delete the 

already uploaded file.

7. Verify that clicking on delete option for one file will bring up a popup asking for confirmation before deleting the file. The 

popup will have “Yes” and “No” buttons. Clicking on button “Yes” will successfully delete the file and “No” will not process 

the delete request and close the popup.



Acceptance Criteria (cont…)

Acceptance Criteria

8. Verify that there is a pagination to structure the list of files so that user sees 30 files per page.

9. Verify that there is a link “Download the list of failed files”, that will download an excel file with list of file names that 

failed uploading, along with reasons of failure like file format not support, or individual files exceeded size limit of 20 MB.

10. Verify that there is a “Send for Evaluation” button that sends uploaded files to the evaluation engine for processing. 

11. Verify that there is a “Delete All” button to delete all uploaded files with a single click.

12. Verify that clicking on “Delete All” button will bring up a popup asking for confirmation before deleting all uploaded file. 

The popup will have “Yes” and “No” buttons. Clicking on button “Yes” will successfully delete all files and “No” will not 

process the delete request and close the popup.



Thank You!


	Slide 1: Virtual Agents Testing Solution
	Slide 2: Content
	Slide 3: Chatbot Fails
	Slide 4: Problem Statement
	Slide 5: Problem Space: Identifying the root cause
	Slide 6: Exploring the Problem
	Slide 7: Solution Proposed : Build AI Agent Testing Framework 
	Slide 8: Objectives Met by AI Agent Testing Framework
	Slide 9: Objectives Met by AI Agent Testing Framework
	Slide 10: Virtual Agent Testing Framework
	Slide 11: Exploring Solutions for “Evaluation Engine” 
	Slide 12: Weighted Criteria Matrix
	Slide 13: Dependency Check
	Slide 14: Core Features of the Testing Application (High Level)
	Slide 15: Features List of the Testing Application with Prioritization
	Slide 16: Timeline for MVP and Roadmap
	Slide 17: Delivery Plan 
	Slide 18: Sample User Story and Acceptance Criteria
	Slide 19: Acceptance Criteria (cont…)
	Slide 20: Thank You!

